skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fuhrman, Evelyn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Among the many different pieces of physics that go into simulations of the circumgalactic medium (CGM), the metagalactic ultraviolet background (UVB) plays a significant role in determining the ionization state of different metal species. However, the UVB is uncertain, with multiple models having been developed by various research groups over the past several decades. In this work, we examine how different UVB models influence the ionic column densities of CGM absorbers. We use these UVB models to infer ion number densities in the Figuring Out Gas and Galaxies In Enzo (FOGGIE) galaxy simulations atz= 2.5 and use the Synthetic Absorption Line Surveyor Application package to identify absorbers. Absorbers are then matched across UVB models based on their line-of-sight position so that their column densities can be compared. From our analysis, we find that changing the UVB model produces significant changes in ionization, specifically at lower gas densities and higher temperatures where photoionization dominates over collisional ionization. We also find that the scatter of column density differences between models tends to increase with increasing ionization energy, with the exception of Hi, which has the highest scatter of all species we examined. 
    more » « less
    Free, publicly-accessible full text available September 30, 2026